US 7,451,435 B2

3

conventional software-based computers that descriptively
and necessarily links the active processes (and their load
model sources) with the representation of the application
program that the user sees (typically via a graphic user-inter-
face (GUI) process).

SUMMARY

Described herein is at least one implementation employing
multiple self-describing software artifacts persisted on one or
more computer-storage media of a software-based computer.
In this implementation, each artifact is representative of at
least part of the software components (e.g., load modules,
processes, applications, and operating system components)
of the computing system and each artifact is described by at
least one associated “manifest,” which include metadata
declarative descriptions of the associated artifact.

BRIEF DESCRIPTION OF THE DRAWINGS

The same numbers are used throughout the drawings to
reference like elements and features.

FIG. 1 shows an example operating scenario for an imple-
mentation described herein.

FIG. 2 shows a flow diagram showing one or more meth-
odological implementations, described herein, for manage-
ment of persisted self-describing artifacts and performing
gatekeeping on execution of software components composed
of, at least in part, of the self-describing artifacts.

FIG. 3 shows a flow diagram showing a methodological
implementation described herein to verify the persisted self-
describing artifacts.

FIG. 4 shows a flow diagram showing a methodological
implementation described herein to inspect an offline “sys-
tem image” composed of, at least in part, of the persisted
self-describing artifacts.

FIG. 5 is a diagram showing an example inter-relationship
structure amongst software components (e.g., load modules,
processes, applications, and operating system components),
the example structure being in accordance with an implemen-
tation described herein.

FIG. 6 shows a flow diagram showing a methodological
implementation described herein to create and manage appli-
cation abstractions.

FIG. 7 is an example of a computing operating environ-
ment capable of (wholly or partially) implementing at least
one embodiment described herein.

DETAILED DESCRIPTION

The following description sets forth techniques imple-
menting a computing technology for a software-based com-
puter employing self-describing software artifacts. An exem-
plary implementation of these techniques may be referred to
as an “exemplary self-describing artifact architecture.”

The exemplary self-describing artifact architecture pro-
vides a refreshing and invigorating approach to the realm of
computer science. Rather than being no more than an accu-
mulation of bits resulting from series of ad hoc events during
the lifetime of a software-based computer, the contents and
configuration of the computer utilizing this new architecture
is an organized, stable, reliable, robust, and deterministically
constructible collection of self-defining software artifacts.

Before describing the new architecture, a brief introduc-
tions of terminology is appropriate. The following terms, as
used herein, are briefly defined here. However, the reader is

5

10

15

25

30

35

40

45

50

55

60

65

4

encourage the read the full text to understand and appreciate
the full meaning of each term in the context of the full descrip-
tion.

Software Artifact (or simply “artifact”) is an offline mani-
festation of an executable entity (e.g., a process, an
application, a component of the operating system); it
includes, for example, load modules and configuration
files.

Manifest is metadata declarative description of an execut-
able entity. A manifest may be associated with each
manifestation of an executable entity. Manifest may be
static or dyamic.

Prototype is an executable (or “runable”) manifestation of
an executable entity, but a prototype of an entity is not in
an executing state.

Abstraction is a manifestation of an executable entity when
it is in an executing state (“it is running™).

Component is a part, portion, or constituent element of a
manifestation of an executable entity; For example, an
application includes process components and a process
includes executable instructions as components.

Exemplary Self-Describing Artifact Architecture

FIG. 1 illustrates one view of an exemplary self-describing
artifact architecture 100. In this view, the architecture 100 is
implemented on a software-based computer 102, which is
configured with a memory 110 (e.g., volatile, non-volatile,
removable, non-removable, etc.). The computer 102 has an
operating system (OS) 112, which is active in the memory
110.

The computer 102 has access to at least one computer-
storage device 120 (e.g., a “hard disk™). The computer-stor-
age device 120 contains the contents and configuration that
embody the computer 102. The contents include various soft-
ware components, which include (by way of example and not
limitation) an operating system (OS), the OS elements, all
installed applications, and all other associated components
(e.g., device drivers, installation files, data, load modules,
etc.). The configuration includes the specified properties of
each software component and the defined interrelationship
amongst the components.

For the purposes of this discussion, references to the “sys-
tem” represents the software-based computer 102 as it is
embodied by the contents and configuration of the storage
device 120. A persisted offline (i.e., non-executing) copy of
the system may be called, herein, a “system image.”

FIG. 1 shows, for example, three artifacts (130, 140, and
150) stored on the storage device 120. Herein, “software
artifacts” or simply “artifacts™ are collections of individual
software items stored on the computer-storage device 120.
Portions of these items may be stored in various system stores
including file systems, databases, configuration registries,
etc. Those artifacts represent the system-embodying content
and configuration. A computer’s storage device may have a
multitude of artifacts. A system image of a computer contains
a multitude of artifacts.

Unlike a conventional software-based computer, the arti-
facts of the computer 102 are not merely an accumulation of
bits resulting from series of ad hoc events during the lifetime
of'the computer. Rather, each of the artifacts of the computer
102 are associated with at least one manifest. For example,
systems artifact 130 has its associated manifest 132 stored
therewith the artifact or at some derivable or known-location
on the storage device 120. Artifacts 140 and 150 have their
associated manifests, 142 and 152 respectively.

These artifacts are called “self-describing artifacts”
because each of the artifacts (via its associated manifest of



